Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.19.20248567

ABSTRACT

The SARS-CoV-2 antibody neutralization response and its evasion by emerging viral variants are unknown. Antibody immunoreactivity against SARS-CoV-2 antigens and Spike variants, inhibition of Spike-driven virus-cell fusion, and infectious SARS-CoV-2 neutralization were characterized in 807 serial samples from 233 RT-PCR-confirmed COVID-19 individuals with detailed demographics and followed up to seven months. A broad and sustained polyantigenic immunoreactivity against SARS-CoV-2 Spike, Membrane, and Nucleocapsid proteins, along with high viral neutralization were associated with COVID-19 severity. A subgroup of high responders maintained high neutralizing responses over time, representing ideal convalescent plasma therapy donors. Antibodies generated against SARS-CoV-2 during the first COVID-19 wave had reduced immunoreactivity and neutralization potency to emerging Spike variants. Accurate monitoring of SARS-CoV-2 antibody responses would be essential for selection of optimal plasma donors and vaccine monitoring and design.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
3.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-92527.v1

ABSTRACT

Considerable concerns relating to the duration of protective immunity against SARS-CoV-2 have been raised, with evidence of antibody titres declining rapidly after infection and reports of reinfection. Here we monitored antibody responses against SARS-CoV-2 receptor binding domain (RBD) for up to six months after infection. While antibody titres were maintained, half of the cohort’s neutralising responses had returned to background. However, encouragingly in a selected subset of 13 participants, 12 had detectable RBD-specific memory B cells and these generally increased out to 6 months. Furthermore, we were able to generate monoclonal antibodies with SARS-CoV-2 neutralising capacity from these memory B cells. Overall our study suggests that the loss of neutralising antibodies in plasma may be countered by the maintenance of neutralising capacity in the memory B cell repertoire.

SELECTION OF CITATIONS
SEARCH DETAIL